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Abstract 

A description is given of a nondiscrete ring topology on the algebraic closure of a finite field. 
Its completion is constructed, and a family of continuous functions on it is given. Some 
generalizations to other fields are suggested. 

1. Introduction 

All fields considered in this paper are assumed to be commutative. In 1968, Kiltinen 

[7] and Arnautov [l] proved that every infinite field admits a proper field topology. 

They make use of an inductive procedure which was first introduced by Hinrichs [6]. 

A field is called algebraic if it is an algebraic extension of a finite field. In [7], it is 

proved that the only fields which do not admit a proper locally bounded ring topology 

are the algebraic fields. In this article we introduce a ring topology for the algebraic 

closure T(p) of a finite field of characteristic p. This topology is described in a more 

explicit way than the inductive topologies in [l, 7, 13, p. 841. We also study the 

completion of T(p), which we denote by nP; in this ring we introduce a family of 

continuous functions with good convergence properties. Next, we introduce a slightly 

different topology with similar features. Finally, we deal with generalizations of our 

topology to other fields. For a general background about algebraic fields, the book 

[3] is recommended. 

Both topologies introduced here were first obtained by means of nonstandard 

analysis (see [ll, Section 41); we follow standard treatment in order to get a more 

accessible exposition. 
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2. Construction of the topology 

Throughout the paper, let p be a fixed prime number. Let GF(p”) be the finite field 
with p” elements, and let T(p) be its algebraic closure, which we suppose to contain 
GF(p”) for all n E N. Let us see some properties satisfied by these fields. The field 
GF(p”) is a subfield of the field GF(p”) if and only if nlm. The field T(p) can be written 
as the union 

For 

T(p) = +G GF(p"') = +ii G&T). 
n=l n=l 

all n 2 2, we have that 

GF( p”‘)/GF(p’“- I)‘) (1) 

is a simple algebraic extension field of degree n. For each n 2 2. we fix an irreducible 
polynomial P,(X) E GF(p’“-“’ )[X] of degree n such that we have the field isomor- 
phism 

GF(p”‘) E 
GF(p’“- “‘)[X] 

(P.(X)) . 

We fix a root of each polynomial P,(X), which we will denote by ~1, E GF(p”‘). This 
IX, is a primitive element of the extension field (1) and therefore we have 

GF( p”‘) = GF(p’“- I”) [cc,] . (2) 

Furthermore, we will call PI(X) = 1 and ai = 1. Throughout this article, {Pn(X)JnEN 
and {cl,,],, E N will denote the above family of polynomials and the corresponding family 
of primitive elements of each extension field (1). 

For each a E GF(p”‘) there is a unique polynomial 

QJX) E GF(p’“-I”) [X] (3) 

that satisfies deg(Q,(X)) 5 n - 1, and a = Qa(un). For all natural numbers n 2 2 we 
define 

G, = {a E GF(p”‘): Qa(X) satisfies QU(0) = 01; (4) 

namely, G, is the additive subgroup of GF(p”‘) consisting of those elements a having 
associate polynomial Q.(X) with constant term null. We set G1 = GF(p). We have the 
following direct sums of additive subgroups: 

GF(p”‘) = GF(p’“-I”) @ G, for all II 2 2. (5) 

T(P)= 0 6. (6) 
ntN 

We shall call H, = 0, 2 n Gj . Therefore for all y1 2 2 we have r(p) = GF(p’“- ‘I’) 0 H,. 

The inclusion G,G, c G, holds for all m > n. In view of the above, we conclude the 
following result. 
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Lemma 1. Every element a E T(p) can be expressed as I( sum a = C’,= 1 a,,, where 

a,, E G,. und such representation is unique. 

Let us define two functions on T(p). 

Definition 1. Let a E T(p) be a nonzero element such that a = C’,=, u,, where u, E G,,. 

We define 

depth(a) = minjn: a, # 0; = maxIn: a E H,), 

height(a) = maxin: a, # 01 = min(n: a E GF(p”‘)). 

Further we set depth(O) = height(O) = 1. 

We shall also define another integer function for each subgroup G,, which we shall 

call “weak degree”, and we denote by “wd( )“. 

Definition 2. For each n 2 2, let a E G,\(O), and let f&(X) E GF(p’“P”‘)[X] be the 

polynomial defined in (3); we shall call wd(a) = deg(Q,(X)). We complete the defini- 

tion with wd(a) = 1 for all a E GF(p). 

It is clear that 0 < wd(a) I II - 1 for all a E G, with n 2 2. We have called it “weak 

degree” in order to avoid confusion with the degree of an element a belonging to r(p). 

When a E T(p) the expression degree(a) usually means the degree of the field extension 

GF(p)[u]/GF(p), i.e., the degree of the irreducible polynomial of a over the prime 

field GF( p). The following two lemmas are immediate consequences of the definitions. 

Lemma 2. For every a, b E T(p)‘\ (O), the functions “depth” and “height” d@ined ahore 

have the jbllowing properties: 

depth(a + b) 2 min {depth(a), depth(b)), equality holds $depth(a) # depth(b). 

height(a + h) I max fheight(a), height(b)), equality holds ifheight # height(h). 

In addition, if u = C”,= la, and b = I’,=, b,, kvhere u,, h, E G, such that wd(a,) < II/? 

and wd(b,) < n/2 for all n I j, then 

depth(ab) = max [depth(a), depth(b)}, 

height(ab) = max (height(a), height(b); 

Lemma 3. For all a, b E G,, the function “\veak degree” satisfies that \rd(a + b) < 

max jwd(a), wd(b)), and equality holds if uld(a) # wd(b). Furthermore. if \rd(a) < nl’3 

and wd(h) < n/2, then uvd(ab) I wd(a) + wd(h), with equality holding if ah # 0. 

With the aid of these functions we are prepared to define a neighborhood basis at 

zero of a ring topology on T(p). For all I?? E N let 

V, = c a,, E T(p): for all n, a,, E G, and wd(a,) 2 t 
nzm 

(7) 
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This family of neighborhoods of zero will be denoted by $$ = (I’,,,}, E N. Every nonzero 
element a E V, has depth(a) greater than or equal to m. Thus for all m E N we have the 
inclusion V, c H,. The following property can be easily checked. 

Lemma 4. Each neighborhood of zero V, is an additive subgroup of T(p). 

We recall that for a sequence (U,),, E N of subsets of a commutative ring R to be 
a fundamental system of neighborhoods at zero for a Hausdorff ring topology on R, it 
suffices that the following properties hold. 

For all n, OE U,, U, = - U,, Un+l = U,. (8) 

For all n, Un+l + Un+l c U,. (9) 

For all n there exists k such that Un+k Un+k c U, . (10) 

For all n and .Y E R there exists k such that .xU,,+~ c U,. (11) 

nFN U, = 10:. (12) 

See, for instance, [7,9, 12, 141. We can now show the following result. 

Theorem 5. The family .& = { V,), E N de$ned in (7) is a basic system of neighborhoods 
of zero for a Hausdorflring topology on T(p). that we will denote by F. 

Proof. We are going to see that this family 2 satisfies properties (8)-(12). It is obvious 
that (8) holds; (9) is a consequence of every V, being an additive group. We now check 
(11). Given V, E A? and a E T(p), with a # 0; we take k E N such that 
m + k > height(a). We claim that uVmik c V,. Let h E Vm+k with b # 0; we can 
express b = I’,= m+kbn, where b, E G,. Since n 2 m + k > height(a), then ab, E G,, and 
we can write ab = I’,= ,+kabn. We have depth(ab) = depth(b) 2 m + k, and for all 
n such that m + k I n 5 j, the equality wd(ab,) = wd(b,) holds. Consequently, 

ab E Vm+k = I/,,,, and the claim is proved. 
Let us show (10). Given V, E 2, we take an integer m such that m 2 21 and m 2 3; we 

claim that V,V, c Vt. For all a, b E V, with a # 0 and b # 0, we give their repres- 
entation a = CJn,,,an and b = xi=,b,,, where a,, b, E G,, wd(a,) I n/m I n/3 and 
wd(b,) I n/m 5 n/3. Then, 

max(J. k) 

ab = C c, 
Pl=WI 

where c, = (:$iai)b. + (:$Ib,)an + a,b,EG,. 

For all n such that m I n 5 max( j, k), the following inequality holds: 

wd(c,)~wd(b,)+wd(a,)~r+n~~; 
m m 

besides, depth(ab) = max jdepth(a), depth(b)} 2 m r 1; then ah E V,, and the claim is 
proved. 
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Finally (12) follows from the fact that for every a E T(p) with n # 0, if depth(u) = m, 

then a+T/,,+i. 0 

Kiltinen [7] and Arnautov [l] proved that every infinite field admits a nondiscrete, 

Hausdorff field topology. In [ 13, p. 841, a ring topology on an infinite algebraic field is 

given by means of Kiltinen’s method. In this topology, a neighborhood basis at zero is 

defined recursively. We have not been able to find in the literature a more explicit 

example of a ring topology on T(p). 

We can easily get from ,Y a field topology on T(p) using as a basis of zero 

neighborhoods the family 

VIM 

1 1 l+V m m22 

(see [14, p. 18; 12. p. 32; 4; 51). Let us describe some properties of the topology .F. 

Lemma 6. A sequence of elements (b,), E N of r( p) is a Cauchp sequence with respect to 

the ring topology 3 if and only if lim,, X (b, + , - b,) = 0. 

Proof. It is an immediate consequence of the fact that each V, E .B is an additive 

subgroup of T(p). 0 

We recall that a subset S of a commutative topological ring R is bounded if given 

any neighborhood V of zero, there exists a neighborhood U of zero such that SU z I/ 

If R is a field, this is equivalent to saying that given any neighborhood V of zero, there 

exists a nonzero element x E R such that S.x c V (see [lo; 12, Theorem 3, p. 42; 14. 

Lemma 12, p. 261). A ring topology on R is locally bounded if there is a bounded 

neighborhood of zero. The field T(p) does not admit any proper locally bounded ring 

topology (see [7, Theorem 6.11). Consequently, our topology .F is locally unbounded. 

This fact can also be deduced from the lemma below. 

Lemma 7. For each neighborhood V, E J and each nonzero element a E T(p), 

a V, $ V, + 1. Therefore V, is not a bounded set. 

Proof. Suppose there exists an a such that aV, c I/,+ 1. Let n be an integer such that 

n > height(a), n > m and m divides n. Let v E G, which satisfies wd(v) = n/m; since 

depth(v) = II > m, v E Vm. But we have av E G, and wd(av) = n/m, thus av$V,+ 1, and 

hence aV, yk Vm+,. a contradiction. Consequently, such an a does not exist. 0 

We recall that a nonzero element a of a topological ring is topologically nilpotent if 

lim,+, an = 0. In (r(p), f) there is not any topologically nilpotent element, because 

for all a E r(p) the sequence (a”),, E N is cyclic. Let (a,),, t fJ be the sequence of primitive 

elements defined in (2); we can easily check that lim,, , r, = 0. 
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Lemma 8. Let (b,), E N be a sequence of nonzero elements of r( p) that converges to zero. 
Then lim,, ,I degree(b,) = + cc;. 

Proof. It suffices to consider that, for every I/, E B’, the intersection V/mnGF(p’“-l)‘) 
= (0). Then for all a E I/, with a # 0, we have degree(u) > (m - l)!. 0 

The above lemma shows the close relation between the algebraic structure of T(p) 
and the ring topology 3. Its converse is not true at all. If (b,) is a sequence of nonzero 
elements such that lim,,, b, = 0, we have that lim,,, degree(b; ‘) = lim,,. 
degree(b,) = + cc, but limb, 1 does not exist. 

3. The completion of T(p) 

The field T(p) is not complete with respect to the ring topology 5. For example, 
given the sequence (Ed), E N of primitive elements defined in (2) the sequence (/In),, E N 
whose terms are defined as /In = I:= 1 C(i is a Cauchy sequence; but it is clear that (fin) 
has no limit in T(p). We shall consider its completion, which will be, as usual, the 
quotient ring of the ring of Cauchy sequences by the ideal of all sequences converging 
to zero. We say that two Cauchy sequences are equivalent if they represent the same 
element in this quotient ring. In order to describe this completion in an easier way, we 
will need the next lemma. 

Since T(p) = GF(p”‘)@ H,+i, for all a E T(p) there are c E GF( p”’ ) and d E H,, 1 

such that a = c + d, c and d being unique; we can define for each natural number 
n E N the following map: 

71,: I-(p) + GF(p”‘) 
(13) 

a + ?TJa) = c. 

It is clear that if n 2 m then n,,‘~ n, = rc,. 

Lemma 9. Let (b,) be a Cauchy sequence in T(p). There exists a unique Cauchy 
sequence (a,,) which is equivalent to (b,), satisfies a, E GF(p”‘) for all n E N and 
~,(a,) = a, for all m 2 n. 

Proof. For every neighborhood V ,,,+ 1 in B, there is a natural number N(m) such that 

bi- bjE T/m+l whenever i, j 2 N(m). We may assume the sequence N(m) to be strictly 
increasing with m; in particular N(m) 2 m. For all m E N, we define 
a,,, = n,,,(bNcm,) E GF(p”‘). Let us see that ~,(a,) = a, for all n 2 m; it sufffices to 
show that ~,(a,,,+~) =a,. We have bNcm+l,- bNcrnjE Vm+l cH,+~, and so 

n,(bivc,+ 1)) = n,(bN(mJ, thus ~,(a, + 1) = a,. 
Let us see now that (a,) is a Cauchy sequence equivalent to (6,). Given V, E d, for 

every natural number k such that k > N(m) and 

k > height(b,,,,), (14) 
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We have ak = nk( b,(k)). We Can Split 

hk - ak = fbk - bN,,)) + (h’(m) - uk). (15) 

Since X: > N(m) and N(k) > N(m), we have bA - bNtm, E V, and bN(,,,, - h,,,, E V,. 

Considering (14) and the structure of V, in (7), we deduce bN,,,,) - na(bNCk,) E V,, that 

is. bN(,,,, - uk E V,. Then, (15) implies that b6 - uk E V, + V, = V,. Consequently, 

(u,) is a Cauchy sequence equivalent to (b,). 

Let us show the uniqueness. Let (u;) be a different Cauchy sequence satisfying 

7r,(uk+ i) = a; for all n E FV. If a;,, # a,,, then n,~,(u~) # rc,,,(u,,) for all n 2 no; hence 

a:, - %I$ v,,, + 1. and so they are not equivalent. 0 

The situation described in the previous lemma is similar to that of the p-adic 

completion of the rational field Q; see [8, Theorem 2, p. 111. We shall denote by A, the 

completion ring of (T(p), 9 ). Throughout the rest of the paper, CT= 1u, will mean the 

element in il, which is the limit of the Cauchy sequence (Cr= i~,,),,.~~, in case it exists. 

Notice that whenever a sequence (a,), E N verifies that a, E G, and lim wd(u,)/n = 0. the 

series 15 la, converges. Finally, let us describe the elements of A,. 

Theorem 10. Each elemerzt a E Ap can be represented in u unique guy us u series 

7 

u= pz, wd(a,) 
Klhere u, E G, and lim ~ = 0. 

n=l n-K I1 

Proof. Let h E A,. Applying lemma 9, we see that there is a Cauchy sequence (b,) that 

satisfies b, E GF(p”‘), nn(b,+ 1) = b, for all n E N and lim,, Jc b, = b. For every integer 

n~2,wesetu,=b,-b,-,~G,,andweletu~=b,~G~.Thus,b,=~“,~~u,.Since 

(b,) is a Cauchy sequence, the series I:= 1u, converges and its sum is C,‘=ium = b. 

Besides, lima, = 0. Thus, for every l/j E d there is no E N such that u, E Vi for all 

II 2 no; hence, considering that a, E G,, we have wd(u,) i n/j. Therefore 

wd(u,),‘n I l/j for all n 2 no, and we have showed that lim wd(u,)/n = 0. The unique- 

ness of this series follows from Lemma 9. 0 

We can extend the topology 9 from T(p) to nP; for convenience, we shall denote 

this extended topology also by Y. A fundamental system of neighborhoods of zero 

will be 2 = i Vm],nEN, where V, is the closure of V, E J in our new topology on 

‘1, (see [12, Theorem 5, p. 1753). It is easily checked that the neighborhoods in the 

basis ~2 will be the following sets: 

II 

V, = a = C N,EA~. where a, E G, and wd(u,) I ‘1 
ll=lll m 

(16) 

We can also extend the “depth” function, in the obvious way to the whole ring A,,. 

Every nonzero element a E P, has depth greater than or equal to rn. The ring 
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A, endowed with the extended topology .Y is again a topological ring. Each neighbor- 
hood V, from the basis 2 is an additive subgroup of (A,, + ), and it is an open and 
closed set for the topology f. Consequently, (A,, Y) is a totally disconnected 
topological space. This completion has the following properties: 

l A sequence (a,) in A, converges if and only if it is a Cauchy sequence, and if and 
only if lim(a,+ i - a,) = 0. 

l A series C,“= 1 b, converges if and only if limb, = 0. 

Let us describe the structure of the ring nP. 

Proposition 11. The ring Ap is an integral domain, in which the only incertible elements 
are those in T(p)\(O). 

Proof. Let a, b E A,\{O}. Applying theorem 10, they can be expressed as 

a= fan. b= fb,., where a,, b, E G, for all n E N. 
n=l n=l 

If u E r(p) or b E T(p), then clearly ab # 0. Thus, we assume that u, b E A,\,r( p), and. 
therefore, there are infinitely many nonzero a, and b,. Since lim,,, wd(a,)/n 
= lim,,, wd(b,)/n = 0, there is no E N such that wd(a,) < n/2 and wd(h,) < n/2 for 

all n 2 no. We choose an integer j that satisfies j > max{no, depth(u), depth(b)} and 
a, # 0. We now suppose that b, # 0 (if bj = 0 the proof follows similarly). For all n < j 
we have b,aj. bja, E Gj. AS wd(a,) + wd(bj) <j, then a,b, E Gj. Therefore 

j-l J-1 

C; = nglanbj +  n&Ib.aJ + ajbJ E GJ, 

and since 

wd(Ujb,) = wd(aj) + Wd(bj) > max(wd(aj), wd(bj) j 

we have Cj # 0. Since (see [2, 111.6, Exercise 51) 

it follows that I,?= 1 cj is the canonical representation of ab and that ab # 0; i.e., A, is 
an integral domain. Since, also, ab # 1, the elements in A,\T(p) are not units of the 
ring. q 

The above proposition is related to problem 3 in [14, p. 2511. Ap is not locally 
bounded, since the intersection of a bounded neighborhood in A,, with T(p) would be 
a bounded neighborhood in T(p) [12, Theorem 4.1(7)]. 
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4. A family of continuous functions 

In every field with an absolute value (K, 1 I), we can find a neighborhood of zero 
W such that for all a E W, the sequence of powers (am)me pJ converges to zero; for 
example, we may take W = [a E K: Ia/ < l/2). This is the reason why it requires very 
few restrictive conditions over the “a,” coefficients to guarantee the convergence of 
a power series Ci;oa,X” is a neighborhood of zero. But in A, we cannot find such 
a neighborhood W. Since T(p) is dense in its completion, each neighborhood of zero 
in AP contains elements that are not topologically nilpotent. Therefore, the theory of 
convergent power series in (A,, ?F) seems to be more restrictive than the case of 
a valuation field, and we shall not consider it. Nevertheless, we shall study a class of 
functions that can be used to construct convergent series. 

Definition 3. The function h: Ap + A, is defined as follows: 

l IfbEG1,thenh(b)=bccZ. 
l For each n 2 2, and every a E G,, let QJX) E GF(p’“- I”) [X] be the polynomial 
defined in (3) such that a = Qa(ctn); we then define h(a) = Qll(a,+l). 
l For an arbitrary element CI E AP such that a = En*= 1 u,, where u, E G,, we define 
h(U) = c;= 1 h(a,). 

Notice that for each IZ the inclusion h(G,) c G,+ 1 holds. Given any ring R contam- 
ing the field GF(p), we say that a map g : R + R is p-linear transformation if it is 

a linear transformation of R as vector space over GF(p). The function h is clearly 
a p-linear transformation. Besides, the function h is continuous. It is not difficult to see 
that h( V,,) c V, for all it E N. Therefore, h is continuous at zero; then, since h is an 
additive group homomorphism, h is continuous at every a E A,. 

We consider now the set of functions obtained by composing h with itself: 

k terms 

,h: 
(171 

each of these functions is continuous and p-linear. Let us see that the set of functions 
;/,‘k” , I E Rd has good convergence properties. 

Proposition 12. For every element a E Ap, we have lim,, r, h’“‘(a) = 0. 

Proof. Let a E Ap, with a # 0 and depth(a) = m. The element a can be written as 

a = Clt*=,a,, where a, E G,, wd(a,) -=z n for all n and lim.,, wd(a,)/n = 0. Then 
hck’(a) = C;fl=mh(k)(a,), with hck’(a,) E Gk+,,. Given a neighborhood VJ E a, there is 
a positive integer no such that for all n 2 no we have wd(a,) I n/j. Then. 
wd(htk’(a,)) = wd(a,) I n/j I (k + n)/j. Besides, for all n I no and for every integer 
k that satisfies k 2 jno, we have wd(hCk’(a,)) = wd(a,) < n 5 no 5 k/j < (k + PI)~[~. 
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Finally, depth(h’k’(a)) = k + m. Thus II(~)(U) E Vj for all k such that k 2 jn, and 

k + m 2 j, and so lim,,,,h’k’(U) = 0. 0 

Therefore, the series I,“= 1 h’“‘(x) converges at every value x E np. Besides, we can get 

a large family of convergent series; for this purpose we need the following results. 

Lemma 13. For each k E N the set 

Lk= b= fb,,gA ,,. wjhere h, E G,, and for all n E N wd(b,) < k 
n=l 

is bounded. 

Proof. We fix k E N. Let v, be a neighborhood of zero in 3. Let C(k,, E GA,,, be the 

primitive element defined in (2) with the index km. Our aim is to prove that for all 

h E Lk the product bxkm belongs to v,. Since b = I:= 1 b,, 

we have j-i”= 1 bnXkm E Gkm, and, for all n > km, the product h,,C(k,,, E G,. Hence, 

depth(ba,,) 2 km. We now look at the weak-degree. Assuming that bkm # 0 (the case 

hkm = 0 is treated analogously), 

wd( ( nrl ‘+k-) = Wd(b~,C&,) = Wd(bk,) + Wd(C&,) I (k - 1) + 1 = km 
m’ 

and for all n > km we have wd(b,Clkm) = wd(b,) I k - 1 < n/m. Thus, bukm E V, and 

LkC(km c v,,, holds. Therefore, Lk is bounded. 17 

Proposition 14. For each .x E AP \ve consider the series g(x):= I,“= ,b,h’“‘(.x). If there 

exists a set Lk such that b, E Lk for all n E N, then the series converges for all .Y E AP. 

Moreover, the function g : Ap + Ap is a p-linear transformation continuous at all N E A,. 

Proof. By Proposition 12, every .X E A, satisfies lim,,, h’“‘(x) = 0. The set 

B = :bnjneN is bounded because it is contained in Lk. Thus lim,,,b,h’“‘(.u) = 0 and 

the series C,“= 1 b, h’“‘(x) converges. Since each function h ‘n’ is p-linear, g is also p-linear. 

Therefore, in order to prove the continuity of g, it suffices to prove that g is continuous 

at zero. As B is a bounded set, given any neighborhood of zero V, in 2, there exists 

another v, E 2 such that SVj c v,. Since h’“‘(V,) c ~j for all II E N, then 

b,h’“‘(VI) c b,VJ E V, for all n E N. Thus, considering that V, is a closed additive 

subgroup in a complete ring, for all x E V, we have g(_‘o = I,“= 1 b,h’“)(x) E v,,, and 

.4(1/j) E V,. Consequently, g is continuous at zero. 0 
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5. A similar topology with nontrivial continuous automorphisms 

In this section we shall give another example of a ring topology over T(p), very 
similar to the above one Y, but strictly finer. We define a fundamental system of 
neighborhoods at zero. For all natural numbers m we set. 

W, = 
i 

c a, E T(p): for all II, a, E G, and (wd(a,))” I n 
n>m I 

(18) 

This basis of neighborhoods will be denoted by d = [ W,),,, &. Let us notice that. for 
all n > 1. the inequality in (18) can be written as 

log(wd(a,)) < J_ 
log(n) - rn. 

(19) 

Following an argument similar to that of Theorem 5, it can be shown that .2 is 
a fundamental system of neighborhoods of zero for a Hausdorff ring topology on r(p), 
that will be denoted by ,$/“. It is easy to see that for all integer m 2 2 we have W, c V,, 
and V,,, is not contained in W2 for any m. Hence, the topology .y is strictly finer than 
.Y. We can study the topology 5 as we did with .Y. In this new topology the 
completion is the following ring: 

lb:= b= f b,: b,EG,and lim 
n=l n+cr 

We have the strict inclusion YP c nP. Moreover, in this ring Y,, we shall study 
another family of continuous functions that we shall call ‘suitable p-functions”. We 
recall that a polynomial of the form 

i alXP’ E GF(p”)[X] 
1=0 

is called a p-polynomial, or a linearized polynomial over GF(p”). A function 
f: GF(p”) --t GF(p”) is a p-linear transformation if and only if there exists a p- 
polynomial H(X) E GF(p”)[X] such that f(a) = H(u) for all u E GF(p”). Moreover, 
the p-polynomial H can be chosen with degree less than pm. Under this restriction of 
degree, for eachf the corresponding H is unique (see [3, Theorem 1.15, p. 141). 

Definition 4. A function F : r(p) + r(p) is called a suitable p-function if it is a p-linear 
transformation and F(GF(p”‘)) G GF(p”‘) for all n E N. 

Let F be a suitable p-function. For all n E N, F can be restricted to the Galois field 
GF( p”‘) obtaining 

F, := F IGF,,,n’,: GF(p”‘) + GF(p”‘), 

where each F, is a p-linear transformation. Consequently, for each n there is p- 
polynomial H,(X) E GF(p”‘)[X] such that F(a) = F,(u) = H,(u) for all u E GF(p”‘), 
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and if H,,(X) # 0, deg(H,(X)) = pm satisfies 0 I r, < n!. Since every element b E f(p) 

can be written as a sum b = Cf= 1 b,, where b, E G,, F(b) can be written as 

F(b) = i J’rdbn). 
II=1 

For every natural number n, we can get the polynomial H, from H,, 1 as the 

remainder of the euclidean division 

H n+ I = Q,,(X) W’“’ - X) + H,,W. 

A suitable p-function F does not need to be a polynomial function; in fact, it is obvious 

that F is not a polynomial function if and only if lim,, x,r, = + zc . The following 

result informs us about the continuity of F. 

Proposition 15. Let F be the above function. Zf 

Iim Tn = 0, 
n-m log(n) 

then F is continuous at all x E f(p). Furthermore, F can be extended, in the natural way, 

to a function F: Yp + Yp tvhich is p-linear and continuous at all .x E Y,. 

Proof. It suffices to show that F is continuous at zero, because it is a p-linear function. 

Let Wk be a neighborhood from the basis 2 defined in (18). By hypothesis we have 

0 = lim r’ 
log( Pr”) 

- log(p) = lim ~ = 
n+x, log n 

lirn ~og@WL)) 

n-a logn n+n logn ’ 

Thus there exists n, E N such that 

b&-WHd) 1 
log(n) %i 

for all n 2 n,, that is, (deg(H,))2k < n. Let j = max(2k, no], and the Wj be the 

corresponding neighborhood in d. Every b E W, can be written as cfEj b,, where 

b, E G,, and for all n 2j, if 6, # 0 then (wd(b,))’ I n. Thus, if b, # 0 we have 

(wd(F,(b,)))k = (deg(H,)wd(b,))k = (deg(H,))k(wd(b,Z))k < n’i2n’i2 = n. We have 

proved also that F,(b,) E G,; consequently F(b) = C!,=jF,(b,) E Wk and F(Wj) c Wk. 
Hence, F is continuous at zero. 

The function F can be easily extended to a function F over the ring Yp as follows. If 

b = c,“= 1 b, E YP, where b, E G,, then F(h) = 1:~ 1 F(b,). F is clearly a continuous 

p-linear function (cf. Proposition 14). 0 

A particular case of especial importance is given when F is an automorphism of the 

field T(p); then, every function F, is also an automorphism of the finite field GF(p”‘) 
(see [3, Theorem 1.11, p. lo] for a description of the automorphisms of a finite field). 

For all natural numbers n there exists r, E N, 0 < r,, < n! such that for every 
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a E GF(p”‘) we have 

F,(a) = d”“. 

That is, F, is a polynomial function represented by the polynomial 

H,(X) = XP”‘. 

We can check easily that each r, is the remainder of the division of r,,, 1 by n!, 

i.e., r,+ 1 = y,n! + r,. Hence. we have the following consequences of the above prop- 

osition. 

Corollary 16. Let F : r(p) + T(p) he the abore nutomorphism. If 

lim 2 = 0, 
n-n log(n) 

then F is continuous at every n E r(p). 

6. A more general class of fields 

Topologies similar to both described above can be constructed in every infinite 

algebraic extension of a finite field (these fields are described in [3]), and in a more 

general class of fields. Let (s,), E N be a nondecreasing sequence of natural numbers that 

satisfies lim s, = + x,. Let {KnJntN be a family of fields such that. for each n 2 2. 

l K,-,cK,, 

l there exists cn E K, such that K, = K,_ 1 (a,); 

l every field extension K,/K,_ 1 has degree [K, : K,_ 1] 2 s,. 

We consider the field K = lJnEN K,. We can define the functions depth, height and 

wd( ) in this field K as we did in Section 2, and we get again a ring topology with 

similar features. In this topological ring it also holds that a sequence of primitive 

elements converges to zero. 

The field K constructed in this way and the field T(p) are particular cases of 

algebraically unbounded rings, which are defined in [7, Section 41. Kiltinen constructs 

his inductive ring topologies on the algebraically unbounded rings. The topologies we 

have introduced in this article are particular cases of weak inductive ring topologies 

[7, Corollary 8.21. Let us see two examples. 

Example. For every natural number let {,, = e2”““’ be a primitive n!th root of unity. 

such that (;,,,)R = [(n_l,, for all n. We consider the field 

K = u O(;,,<). 
ntN 
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We recall that, for all n 2 2, the degree of the field extension Q(i,,)/Q(&,_ i,,) is 

Thus we can define on K a ring topology in which we have lim,,,. [,, = 0. 

Example. For all integers n 2 2 let Pn = “$ be a positive real root of the polynomial 
X”’ - 2. Let us consider the field 

K2 = U Q(BJ. 
IlEN 

The degree of each extension Q( /$)/Q( /In_ 1 ) is n. One can define a ring topology on 

Kz in which we have lim,,,,n!$ = 0. 
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